3. 電気電子情報工学系 Electrical, Electronics and Computer Engineering Field			EEC-S2
授業科目名 Course Title	システム工学 Systems Engineering	単位数 Credit	2
担当教員 Instructor	廣瀬勝一,小原敦美,坂口文則,木村欣司,田邉英彦 HIROSE Shoichi, OHARA Atsumi, SAKAGUCHI Fuminori, KIMURA Kinji, TANABE Hidehiko	開講学期 Semester	春学期 Spring
キーワード Keywords	暗号, 凸最適化, フーリエ変換, ハイパフォーマンスコンピューティング, 符号理論 Cryptography, Convex programs, Fourier transform, High performance computing, Coding theory	曜日/時限 Day & Time	

授業概要 Course summary

暗号, 凸最適化, フーリエ変換, ハイパフォーマンスコンピューティング, 符号理論について概観する。それぞれの話題について3回の講義が行われる。

This course provides a brief overview of cryptography, convex programs, Fourier transform, high performance computing, and coding theory. There are three lectures on each topic in this course.

到達目標 Course goal

暗号、凸最適化、フーリエ変換、ハイパフォーマンスコンピューティング、符号理論に関する基礎を 理解する。

The goal of this course is to understand the fundamentals related to cryptography, convex programs, Fourier transform, high performance computing, and coding theory.

授業内容 Course description

暗号 (Cryptography)

- · 整数,代数的構造 (Integers and algebraic structures)
- · 共通鍵暗号 (Symmetric cryptography)
- ·公開鍵暗号 (Public-key cryptography)

凸最適化 (Convex programs)

- ・数理計画, 凸集合・凸錐とそれらの性質 (Mathematical program, Convex sets, convex cones and their properties)
- ・凸関数とそれらの性質, 共役関数 (Convex functions and their properties, Conjugate function)
- ・最適性条件, 凸計画・錐計画とそれらの例 (Karush-Khun-Tucker (KKT) optimality conditions, Convex programs, conic programs and their examples)

フーリエ変換, z 変換 (Fourier transform and z-transform)

- ・離散フーリエ変換 (Discrete Fourier transform)
- ・離散時間フーリエ変換 (Discrete-time Fourier transform)
- ·z変換 (z-transform)

ハイパフォーマンス・コンピューティング (High performance computing)

- ・入門:データサイエンスのための計算,キャッシュヒット率,行列乗算,行列ベクトル乗算(Introduction: Computation for data science, Cache hit ratio, Matrix multiplication, Matrix vector multiplication) ・応用1: High Performance Linpack (HPL),シフト付きコレスキーQR 分解,Bichof/Wu 法,村田法
- ・応用 1: High Performance Linpack (HPL), シント行きコレスキーQR 分解, Bichof/Wu 法, 村田法 (Applications 1: High Performance Linpack (HPL), Cholesky QR decomposition with shift, Bichof/Wu method, Murata method)
- ·応用 2: DQDS 法, LSMR 法, 機械学習 (Applications 2: DQDS method, LSMR method, Machine learning) 符号理論 (Coding theory)
- ·BCH 符号 (BCH codes)

- ・リード・ソロモン符号 (Reed-Solomon codes)
- ·QR 符号 (QR codes)

準備学習(予習・復習)等 Preparation / Review

各話題のレポート課題に取り組む。

Students are required to work on a report assignment for each topic.

授業形式 Class style

講義

Lectures

成績評価の方法・基準 Method of evaluation

レポート

Reports

教科書・参考書等 Textbook and material

特になし

None

受講要件·予備知識 Prerequisite

特になし

None

その他の注意事項 Note

授業は対面で実施される。

Lectures will be held in person.